Tissue Metabolic Responses to Salt Stress in Wild and Cultivated Barley
نویسندگان
چکیده
A thorough understanding of the mechanisms underlying barley salt tolerance and exploitation of elite genetic resource are essential for utilizing wild barley germplasm in developing barley varieties with salt tolerance. In order to reveal the physiological and molecular difference in salt tolerance between Tibetan wild barley (Hordeum spontaneum) and cultivated barley (Hordeum vulgare), profiles of 82 key metabolites were studies in wild and cultivated barley in response to salinity. According to shoot dry biomass under salt stress, XZ16 is a fast growing and salt tolerant wild barley. The results of metabolite profiling analysis suggested osmotic adjustment was a basic mechanism, and polyols played important roles in developing salt tolerance only in roots, and high level of sugars and energy in roots and active photosynthesis in leaves were important for barley to develop salt tolerance. The metabolites involved in tolerance enhancement differed between roots and shoots, and also between genotypes. Tibetan wild barley, XZ16 had higher chlorophyll content and higher contents of compatible solutes than CM72, while the cultivated barley, CM72 probably enhanced its salt tolerance mainly through increasing glycolysis and energy consumption, when the plants were exposed to high salinity. The current research extends our understanding of the mechanisms involved in barley salt tolerance and provides possible utilization of Tibetan wild barley in developing barley cultivars with salt tolerance.
منابع مشابه
ارزیابی تحمل به تنش خشکی در جو زراعی و وحشی براساس صفات فیزیولوژیک و شاخصهای تحمل
Drought stress is one the most limiting factors for crop production worldwide. The wide ecological and environmental dispersion of crop wild relatives, generates a high potential of their adaptive diversity to abiotic stresses such as drought. In this study 21 (including 10 cultivated and 11 wild barley (Hordeumvulgaressp. spontaneum))genotypes were evaluated under three soil water conditions f...
متن کاملThe Study of SOS Genes Expression in Mutant Barley Root under Salt Stress
Soil salinity is one of the most critical factors reducing crop yield. SOS signaling is one of the significant pathways that regulate ion homeostasis and it has the important role in mechanism of plant resistance to environmental stresses such as salt stress. Roots are the first organ of plants exposed to salt, so the role of genes involved in this pathway and their relation to salt tolerance w...
متن کاملVariation in salt tolerance of cultivated (hordeum vulgare L.)and wild (H. spontaneum C. koch)barley genotypes from iran
متن کامل
Metabolic Profiles Reveal Changes in Wild and Cultivated Soybean Seedling Leaves under Salt Stress
Clarification of the metabolic mechanisms underlying salt stress responses in plants will allow further optimization of crop breeding and cultivation to obtain high yields in saline-alkali land. Here, we characterized 68 differential metabolites of cultivated soybean (Glycine max) and wild soybean (Glycine soja) under neutral-salt and alkali-salt stresses using gas chromatography-mass spectrome...
متن کاملبررسی غلظت سدیم و نسبت پتاسیم به سدیم بهعنوان ملاک تحمل به شوری در گندم و جو
Most researches on wheat and barley breeding for salt tolerance have focused mainly on excluding Na+ from different tissues but the results of some experiments suggest that contribution of Na+ exclusion to salt tolerance is overshadowed by other physiological responses. Three bread wheat cultivars differing in salt tolerance (Arg, Tajan and Baharan) and one barley cultivar (Nik) were employed t...
متن کامل